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AbstmcL ?he Hartree-Fack formulae are evaluated for a model mnsisting of an 
unmmpensated electron gas in an infinite V-shaped potenlial well. This mnlains a 
diverging elecvostatic (em. The eliminalion of lhis term is discussed on physical gmunds, 
as is the relevance of such an extreme model. Similarilies wilh and differences &om the 
case of an infinite square well are discussed. ?he exchange energy is found lo be always 
unimportant. 

1. Introduction 

In a homogeneous electron gas embedded in a uniform background of positive 
charge-the standard jellium model-local charge neutrality entails a cancellation 
of the electrostatic energy terms and then in the Hartree approximation the energy 
of the electron gas is purely kinetic. In mesoscopic semiconductor systems one 
encounters the problem of a confined quasi-2~ electron gas which may present an 
entirely different situation, depending on how the electron gas has been produced. 
Consider the case of quantum wells. Different experimental techniques can be used to 
populate quantum wells (Jusserand el a1 1989). among which the so called modulation 
doping is widely employed. This is illustrated in figure 1 (upper half). In this case the 
electron gas populating the well is not locally compensated by the positive charges 
of the ionized donors and thus we expect the Hartree energy to contain a significant 
electrostatic contribution. Various experimental techniques are used to probe the 
many-body interactions of a confined electron gas (Jusserand ef a1 1989, Delalande 
el a1 1987, Pinczuk el al 1989, Levenson et a1 1988). The lower part of figure 1 
illustrates a similar system called 6doping (Ploog 1987). All these cases have two 
basic features in common, namely: (i) while the system overall is electrically neutral, 
there is no local charge neutrality anywhere in the domain in which the electron gas 
is confined; (ii) the quasi-2~ electron gas may occupy different subbandsshown as 
parabolae in figure l 4 u e  to the quantization of the ID motion. 

vpical confinement distances are often in the range 1W300 8, and typical areal 
densities in the range 10'u-1012 electrons m-'. Under these circumstances it is 
reasonable to enquire about many-body interactions, especially exchange, as one may 
expect these to he sensitive to the confinement which tends to prevent the electrons 
from keeping apart as freely as they can do in a 3D electron gas. Moreover, one may 
expect some significant consequences to follow when there are electrons populating 
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differ It 

Figure 1. Upper hal t  modulation-doped quantum well. ?he barrier is doped with 
donon up U, R distance (spacer layer) of the well. Positively ionized donors stay k e d  
in the barrier while the corresponding electrons foU into the well and mnstilute a quasi- 
ZD electron gas with free motion parallel to the interfaces and quantized w motion 
perpendicular to these. Lower half: 6doping system. A sheet of donors becomes 
‘ionized and the corresponding eleclmns k m m e  mobile in the w plane parallel In the 
impurity sheet while staying mnfined in the quantized ID motion perpendicular In it. 
The corresponding selfconsistent p ten l ia l  wells have the qualitative shape shown on 
the right. 

k i n  
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...a* . & ” ” . .  . - .-. 
Flgurr Z Atsolute values of the kinetic, electrostatic and exchange energies per panicle 
(in meV) WRUS N ,  (in units of 10l2 ~ m - ~ )  for lhe V-shaped well. 

ibbands: if the electronic wavefunctions are orthogonal with respect to the 
coordinate of the ID motion, then this allows for a greater overlap with respect to the 
other two in-plane coordinates, which tends to allow for a larger exchange interaction. 
Thus one may expect some differences between intra- and inter-subband terms. 

A full self-consistent calculation can be rather elaborate or in any case numerically 
costly, but, at least up to exchange interactions, one can obtain a physical picture 
of the problem by adequate modelling of the confined electron gas and by then 
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evaluating explicitly the Hartree-Fock energy terms, which can be done directly and, 
for some models, can be formulated analytically down to the final stage of numerical 
evaluation. It is instructive to study such a model, which provides an insight into 
an interesting and otherwise complicated aspect of the physics of a confined electron 
gas. 

The simplest way to model a quantum well is to consider a rectangular well 
with infinite potential barriers. For a given real well with finite barriers and a given 
ground-state energy ,?-for the ID motion-one can take an infinite square well a 
little wider, adjusting its width so as to reproduce the same ground level Eo, and take 
this as an approximation to the real well. The electronic wavefunctions are then very 
simple and one can readily evaluate the Hartree-Fock terms, as was done by Glasser 
er a1 (1991). In the same spirit one can try to model the self-consistent well of the 
6doping case-bottom half of figure 1-by considering a somewhat wider V-shaped 
well with a linear potential growing to infinity. The electronic wavefunctions are then 
also known, as they are simply Airy functions and one can then proceed in the same 
manner. 

The purpose of this paper is to discuss the V-shaped potential, herewith denoted 
V, and to compare it with the situation in the case of the square infinite well, 
henceforth denoted S. Section 2 sets out the problem in a general way and summarizes 
the main results for case S, while case V is discussed in section 3, where both cases 
are also compared. 

2. General formulation and results for the infinite square well 

The problem in general is defined as follows. We start from a given total population 
of N ,  electrons cn+ which are confined in 1D and have free motion in 2D with 
position vector p and wavevcctor n. The electronic wavefunctions are of the form 

L ( T )  = (1/LT)eiR.+’vU(z) (1) 
where A is a normalization area and v is the quantum number-subband index- 
associated with the quantization of the motion in ID. The eigenvalues are 

E,(n) = E , ( n )  = E, + (hz/2m)&’ (2) 
and m can be regarded as an effective mass (which we comment on below). We take 
N ,  as the fundamental parameter and study the kinetic, electrostatic and exchange 
energy of this electron gas, which we assume to be degenerate. In practice one 
can see from general statistical considerations (Arora 1982, ’Ma el a/ 1983) that in 
typical mesoscopic semiconductor systems the quasi-2D electron gas is degenerate up 
to T = 77 K and sometimes wen more. It is important in the analysis to follow to 
keep track of all appropriate normalization factors and it may be in order to recall 
the general rule (IGttel 1963) that a sum Over the spectrum means 

Thus, for instance, the total kinetic energy is 
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where f,-the degenerate Fermi-Dirac distribution function for each subband Y- 
cuts the 2~ integration over n when E,(n) equals the Fermi energy E,. This is 
determined by N, in the following manner. The particle density is 
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which contains EF. The integral of n(z) over z must equal the given areal density 
N, and this determines E,. Note the correct dimensions of (5) and (4) and note, 
in particular, the factor A in (4) which comes from (3) and guarantees the correct 
dimensions. We shall he interested in energies per panicle. Since the number of 
particles in the normalization area is AN, (a dimensionless number) the kinetic 
energy per particle is 

This pattern will hold for the other energies to be presently studied, but before 
proceeding a comment is required on the formula (5). If m is an effective mass 
different from the free electron mass mu, then + “ = ( T )  is not a fme elecfronic 
wavefunclion because it contains ip,( z )  which is an envelope firncfion and one must 
enquire whether it is correct to write down a formula for a physical quantity like 
(5) in terms of envelope functions. In this case, as in the rest of the formulae to 
be evaluated in this paper, it turns out that this can be justified (Garcia-Moliner 
and Velasco 1992), though this cannot be taken as a general rule valid for any 
physical quantity. After this note of caution we shall proceed with the rest of the 
formulae in terms of wavefunctions $ ” = ( T )  involving ~ ” ( 2 )  and we shall use (3) as 
explained. The introduction of a normalization area-which in the end we take in 
the limit A -+ m-can easily be avoided by normalizing the ZD plane waves in the 
6 function sense, in which case the amplitude factor is simply (2rr)-’I2 and there is 
no need for A to appear and then disappear in a formula like (6). However, the 
explicit introduction of a normalization area is very convenient in making visible an 
interesting point concerning the electrostatic energy: 

The factor 4 accounrs for spin degeneracy, the factor f ensures that we do not count 
each charge twice. We can conveniently rewrite this as an energy per particle in the 
form 

where 
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Put A = nRZ, so the limit A - 00 is also the limit R -t m. Then 

Now, in the limit R - 00 the first term on the RHS diverges. What does this 
mean? We have na'ively calculated the electrostatic energy of a system which is 
not electrically neutral. In the actual system the conlined electron gas is locally 
uncompensated, but the entire system is altogether electrically neutral on account of 
the positive charges created when the donors are ionized and these charges enter 
explicitly the self-consistent calculation. We can model the confined electron gas by 
confining it with some model infinite barriers and this provides an od hoc way of 
preventing the charged electron &as from blowing up, but we cannot ignore charge 
neutrality without obtaining a divergent term. This term is actually to be cancelled 
hy the interaction with the positive charges, so the energy we really want to calculate 
is simply the finite term 

This was evaluated by Glasser et af (1991) by using an apparently quite different 
formula. It is very instructive to see the relationship between the two approaches. 

We define for each subband U the maximum value of n = nFu at which Eu(nFu) 
equals E,. Then 

which, on account of (5). is 

Now, the electrostatic potential energy drop multiplied by the electronic charge -e 
satisfies the Poisson equation 

d2x , (z ) /dz2  = - ( 4 n / c ) e z n ( z )  (14) 

for which 

V,,(Z) = -- 2 * e z / d z ' n ( r ' ) ~ r - r ' ~  € (15) 

is the solution growing linearly according to 
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for z asymptotically far away. Indeed, an electronic charge at a distance sufficiently 
large that lrl >> lz’l sees just the field created by a ZD sheet of charge density Q 
located at the origin. This is the meaning of (16). Then, returning to (13), we see 
that this is 

H Rodriguez-Coppola and R Pirez-Alvarez 

Part = i ]dzn( r )Vs(z) .  

Thus, on neglecting-for the reason explained above-the divergent term of (7) we 
are left with just the electrostatic self-energy of the electronic charge distribution in 
its own electrostatic field, as one might have expected on intuitive grounds. This was 
the formula used by Glasser et a1 (1991). 

The last term to study is the exchange energy. 

ip”( Z)rp”( z’)ipp,4r)ip,4 2’). (18) ei(=-=’)+-~’) 

Note the presence of a factor A in the denominator. But on performing the 2~ 
integration over p and p’ contained in the integration over T and r’ we obtain, 
putting q = K. - K.’ 

This contains a factor A which cancels that in the denominator, whence the finite 
result 

- _  Part Ex _ _  47r.33NS e’ ””, J F f u ( K )  fu,(n’) J / d r  dr‘ 

e-qlz-”‘l ip , ( . ) ip”(r ‘ ) ip, , ( . ) ip~, (z ‘ ) .  (20) 

The explicit evaluation of these energy terms depends on the eigenfunctions. For 
the S case these are simply 

i pp , ( z )  = m s i n ( u r z / L )  (21) 

where L is the width of the infinite square well, which is also the confinement length 
for the quasi-2o electron gas. We now summarize the main results found for this case 
(Glasser et al 1991). These depend on how many subbands are occupied and it suffices 
to consider just two subbands in order to see the parameters which characterize the 
system. For the first subband K . ~ ~  is related to the areal density N ,  by 

ICF, = JTzq (22) 

and hence we define 

Ct = 2K,L. 
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This is the essential dimensionless parameter which combines the values of N, and 
L and characterizes each system. It b easily seen, for instance, that the threshold for 
the onset of the population of a second subband b not given by some value of N. 
alone, but by the threshold value ah = 2 r d .  Also, the ratio 

depends on a. Then the results for the S case can be expressed in terms of the 
effective-mass ratio p = m/mo and of the Bohr radius a,, = tr2/mue2. In the 
calculation of Glasser et a1 (1991) the origin of energies was taken to be the ground 
state E,, of the lowest subband Y = 0. The main results thus obtained (up to two 
populated subbands) were as follows. 

Kinetic energy: 

EIectrostatic energy: 

and ?,-a dimensionless number-is a function of a only which can be readily 
evaluated from (20) and (21). Numerical values of 0, are given in the paper of 
Glasser et a/ (1991). 

The point is that the kinetic and electrostatic energies have opposite signs. Then 
the Hartree energy is 

This is only an approximate model, but it does show that, depending on circumstances, 
we may expect a tendency to cancellation of the two terms in EH. Note that 

L,  = eau/O.413p (29) 

has dimensions of length and the cancellation of qldn and qB takes place for 
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while the exchange energy increases monotonically with increasing population. Thus 
there is a tendency to enhancement of the importance of the exchange energy 
relative to the Hartree energy. For low populations-only one occupied subband-the 
cancellation of qfin and '1, occurs in this model when L equals the critical length 
L,. For a material like GaAs this is about 239 ,&, which is in the range of typical 
experimental values. 

With all the limitations of a crude model, this analysis focuses on the key 
parameters which determine the physical situation. This is mostly the combination 
of L and N ,  embodied in a and partly also L alone. Furthermore, in practical 
calculations the carriers are sometimes assumed to be all in the lowest subband and 
even in the ground state K = 0, on the grounds that this does not change the main 
statistical result like the relationship between K~ and N,. However, it may affect the 
actual evaluation of the energy terms. This issue can also easily be studied within 
this model and one can see that this approximation may be significantly unjustified in 
some situations (Glasser el a1 1991). 
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3. The V-shaped potential 

It is now interesting to make a similar analysis for the V case. We consider a 1~ 
Schriidinger equation of the form 

- ( h Z / 2 m ) p " ( z ) + ( e F z - E ) p ( z ) = 0 .  (31) 

The linear potential is supposed to model the field created by a sheet of N ,  
donors cm-* (figure 1, bottom right), so F = 2 a N , / ~ .  This bears the same relation 
to the real system as the infinite square well does to the well of figure 1, top right. 
As in that case, F could be interpreted as an equivalent value, somewhat smaller 
than the actual I;, so as to make the infinite V-shaped well a little wider. Note that 
N ,  is also the areal concentration of ZD free electrons in the well. The analysis runs 
in the same way and we expect it to produce similar results but in terms of suitable 
parameters which ought to be different. The identification of these parameters can be 
guessed on intuitive grounds. Firstlv. bv inspection of (29) we expect the combination 

to represent some characteristic length of the host material. The precise numerical 
factor appearing in (29) is a result of the rectangular geometry and there is no reason 
why this should have any relevance in the V case, but e pertains to the background 
material, and we expect it to be a significant parameter. Secondly, it is well known 
(Abramowitz and Stegun 1966) that (31) is transformed into the Airy differential 
equation by a change of variable 

< = ( z  - @ ) / A  0 = E / e F  X = (RZ/2meF)'/3 (33) 

whereupon the wavefunction p(z) becomes a function a(€) which satisfies the Airy 
equation 

@''(€) - E @ ( ( )  = 0. (34) 
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This introduces another parameter X with dimensions of length, which is obviously 
related to the effective width of the well and we may expect this to be the analogue 
of L in the S case, so we now define 

a = 2KFX (35) 

and expect this dimensionless parameter to characterize the situation as the a defined 
in (23) does for the S case. 

Each eigenstate corresponds to a quantized value E, of E, whence P, and E,.  
On the other hand all quantized state amplitudes must vanish at infinity and this rules 
out the Bi function, and thus leaving us with solutions of the form 

@ ( F )  = CWE). (36) 

Put 

c, = (”(2 = 0)  = -p,/x. (37) 

Then 

~ ’ ( c , )  = 0 (even states) p(<,) = 0 (odd states). (38) 

This yields the eigenvalues, for which from the book of Ahramowitz and Stegun 
(1%6) one can obtain analytical approximations which are actually rather accurate in 
practice: 

E, ~1 XeF(  i r ) ( 4 u  - 3)2/3[1 + &(4u - 3)-’] - E,  

E, Y XeF(i7r)(4u - 1)2/3{1 + & [ ( i r ) ( 4 v  - 1)-’]) - E, 

E, = a1/3[1 + AI. 

(39) 

where 

(40) 

This sets the reference level to give Eu = 0, consistently with the convention set out 
in section 2. 

From the normalization condition 

2 L m p 2 ( t ) d r  = 2XC2 Ai2(€)dE = 1 1; 
we find the normalized eigenfunctions 

= (1/2X)’/2B;/2Ai(<”) 

The various energy terms can now be obtained by following the Same general 
pattern. Before proceeding we note that the results (25)-(27) given hy Glasser et al 
(1991) contain a factor a2 /16 rL2N, .  It is easily seen by using the definition (23) 
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and the general statistical formula (22) that this factor is simply equal to 4. Then, 
remembering the definitions (29) and (32), the main results (25)-(27) for the S case, 
when only one subband is occupied, can be written as 

H Rodriguez-Coppola and R Pirez-Alvarez 

(s), = -$EF x 0.429L/t (43) 

( &)s = $EF x 0.429( L / t ) a g . .  

In order to compare the two cases (S and V) it suffices to look at the situation when 
only one subband is occupied. A direct numerical comparison is difficult and might 
not be clear. For the S case there are the two independent input parameters N, 
and L ,  the latter determining the electron wavefunction confinement. For the V 
case there is only one input parameter (N,) which determines the value of A. This 
plays a role which is formally analogous to that of L, but the resulting wavefunction 
confinement bears no relation to the one due  to any given value of L in the S case. 
Thus only a qualitative comparison of the main trends and key features of the results 
is fully realizable. The main results obtained in the present analysis under these 
conditions are as follows. 

For the kinetic energy 

just as in the S case. Indeed, with the energy reference level taken at Eu and only 
one occupied subband the only kinetic energy we are counting is that of the in- 
plane motion. With a parabolic dispersion law the mean kinetic energy in ZD for a 
degenerate electron gas is precisely E F / 2  and this does not depend at all on the 
shape of the confining well in 1D. 

For tne eiecrrostatic energy we obtain 

and for the exchange energy 

= ;EF x 0.318(X/t)a(q,)v (av 
where ( qX)" is a dimensionless number which can be calculated from (20) by means 
of the wavefunctions (42), much as the q, appearing in the S case (27) is calculated 
from (20) but with the wavefunctions (21). 

These results c a n  be compared with those for the S case given in (43). The 
formulae have the same structure and corroborate that, as expected on intuitive 
grounds, X is indeed a kind of confining length playing the role analogous to the 
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width L of the square well. Like L,  X is also a parameter determined by the 
composition of the sample, as F is determined by the areal density N,.  

However, while the formulae have the same structure the physical situation 
actually differs significantly for each case. figure 2 shows the absolute values of 
the mean energies (kinetic, electrostatic and exchange) as functions of N , .  The 
Onset for the population of a second subband is at a value Nu of N ,  = 1.47 x 10l2 
electrons No matter how much N ,  increases only two subbands are populated. 
This is because the effective confining length 

decreases as N ,  increases and, although E, also increases, the higher level E3 
increases faster so as to stay above E,. The kinetic energy increases at first linearly 
with N,, as is obvious from (43) and from the fact that E, is proportional to N ,  
(22). On going beyond the threshold No some of the electrons populate states 
where % starts from zero again, and the rate of increase of (Eki,/Pan) is somewhat 
reduced, but continues to increase. The electrostatic energy has a lower rate of 
increase everywhere. This is easily understood for the low N ,  range from (45). As 
N ,  increases, X decreases, although this decrease is compensated for by the factor 
preceding ( A l e )  which altogether determines an increase in magnitude of (&/Part) 
with increasing N,, but at much reduced rate. The Same trend is maintained for all 
N,. The result is that the two energies differ in magnitude by an increasing amount, 
while (&/Part) turns out to increase so slowly that it practically levels off. Altogether 
the ratio E x / (  E,, + E,) decreases with increasing N,, so we expect the Hartree 
approximation to be quite appropriate in this case. 

These results cannot, of course, be taken literally, since the infinite V-shaped well 
is merely a crude model. The main difference with a real self-consistent potential well 
is that in the latter the electrostatic potential levels off, the higher excited states form 
a sequence with an accumulation point, as in the hydrogenic sequence, and in fact 
three and almost four subbands are often populated in actual experimental samples. 
However, the strong tendency exhibited by this simple model does suggest that we 
should expect the Hartree approximation to work well for 6doping systems, as indeed 
seems to be the case in practice under typical experimental conditions (Koenraad et 
a1 1990). On the other hand it is very instructive to compare the S and V cases, to 
identify the key parameters which play equivalent roles and to see the similarities and 
the differences between the two cases. 

X = (eh2/4rrmeN,)1 /2  (47) 
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